Thin structure filtering framework with non-local means, Gaussian derivatives and spatially-variant mathematical morphology - Université de Reims Champagne-Ardenne
Communication Dans Un Congrès Année : 2013

Thin structure filtering framework with non-local means, Gaussian derivatives and spatially-variant mathematical morphology

Résumé

Thin structure filtering is an important preprocessing task for the analysis of 2D and 3D bio-medical images in various contexts. We propose a filtering framework that relies on three approaches that are distinct and infrequently used together: linear, non-linear and non-local. This strategy, based on recent progress both in algorithmic/computational and methodological points of view, provides results that benefit from the advantages of each approach, while reducing their respective weaknesses. Its relevance is demonstrated by validations on 2D and 3D images.
Fichier principal
Vignette du fichier
Nguyen_ICIP_2013.pdf (1.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01719128 , version 1 (28-02-2018)

Identifiants

Citer

Tuan-Anh Nguyen, Alice Dufour, Olena Tankyevych, Amir Nakib, Eric Petit, et al.. Thin structure filtering framework with non-local means, Gaussian derivatives and spatially-variant mathematical morphology. International Conference on Image Processing (ICIP), 2013, Melbourne, Australia. pp.1237-1241, ⟨10.1109/ICIP.2013.6738255⟩. ⟨hal-01719128⟩
179 Consultations
224 Téléchargements

Altmetric

Partager

More