Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs

Abstract : Rankin-Cohen brackets are symmetry breaking operators for the ten-sor product of two holomorphic discrete series representations of SL(2, R). We address a general problem to find explicit formulae for such intertwining operators in the setting of multiplicity-free branching laws for reductive symmetric pairs. For this purpose we use a new method (F-method) developed in [KP15-1] and based on the algebraic Fourier transform for generalized Verma modules. The method characterizes symmetry breaking operators by means of certain systems of partial differential equations of second order. We discover explicit formulae of new differential symmetry breaking operators for all the six different complex geometries arising from semisimple symmetric pairs of split rank one, and reveal an intrinsic reason why the coefficients of orthogonal polynomials appear in these operators (Rankin-Cohen type) in the three geome-tries and why normal derivatives are symmetry breaking operators in the other three cases. Further, we analyze a new phenomenon that the multiplicities in the branching laws of Verma modules may jump up at singular parameters.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [11 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01907211
Contributor : Michael Pevzner <>
Submitted on : Sunday, October 28, 2018 - 5:19:25 PM
Last modification on : Wednesday, October 31, 2018 - 1:14:09 AM
Document(s) archivé(s) le : Tuesday, January 29, 2019 - 1:04:12 PM

File

FMETHOD_PART2.pdf
Files produced by the author(s)

Identifiers

Collections

INSMI | LMR | URCA

Citation

Toshiyuki Kobayashi, Michael Pevzner. Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs. Selecta Mathematica (New Series), Springer Verlag, 2016, 22 (2), pp.847-911. ⟨10.1007/s00029-015-0208-8⟩. ⟨hal-01907211⟩

Share

Metrics

Record views

12

Files downloads

17