Molecular-level characterization of elastin-like constructs and human aortic elastin - Université de Reims Champagne-Ardenne Accéder directement au contenu
Article Dans Une Revue Matrix Biology Année : 2014

Molecular-level characterization of elastin-like constructs and human aortic elastin

Andrea Heinz
  • Fonction : Auteur
Christoph Schräder
  • Fonction : Auteur
Fred Keeley
  • Fonction : Auteur
Suzanne Mithieux
  • Fonction : Auteur
Anthony Weiss
  • Fonction : Auteur
Reinhard H.H. Neubert
  • Fonction : Auteur
Christian E.H. Schmelzer
  • Fonction : Auteur

Résumé

This study aimed to characterize the structures of two elastin-like constructs, one composed of a cross-linked elastin-like polypeptide and the other one of cross-linked tropoelastin, and native aortic elastin. The structures of the insoluble materials and human aortic elastin were investigated using scanning electron microscopy. Additionally, all samples were digested with enzymes of different specificities, and the resultant peptide mixtures were characterized by ESI mass spectrometry and MALDI mass spectrometry. The MS2 data was used to sequence linear peptides, and cross-linked species were analyzed with the recently developed software PolyLinX. This enabled the identification of two intramolecularly cross-linked peptides containing allysine aldols in the two constructs. The presence of the tetrafunctional cross-link desmosine was shown for all analyzed materials and its quantification revealed that the cross-linking degree of the two in vitro cross-linked materials was significantly lower than that of native elastin. Molecular dynamics simulations were performed, based on molecular species identified in the samples, to follow the formation of elastin cross-links. The results provide evidence for the significance of the GVGTP hinge region of domain 23 for the formation of elastin cross-links. Overall, this work provides important insight into structural similarities and differences between elastin-like constructs and native elastin. Furthermore, it represents a step toward the elucidation of the complex cross-linking pattern of mature elastin.

Dates et versions

hal-03541820 , version 1 (24-01-2022)

Identifiants

Citer

Andrea Heinz, Christoph Schräder, Stéphanie Baud, Fred Keeley, Suzanne Mithieux, et al.. Molecular-level characterization of elastin-like constructs and human aortic elastin. Matrix Biology, 2014, 38, pp.12-21. ⟨10.1016/j.matbio.2014.07.006⟩. ⟨hal-03541820⟩

Collections

CNRS URCA MEDYC
26 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More