Pellet-Based Fused Filament Fabrication (FFF)-Derived Process for the Development of Polylactic Acid/Hydroxyapatite Scaffolds Dedicated to Bone Regeneration - Université de Reims Champagne-Ardenne
Article Dans Une Revue Materials Année : 2022

Pellet-Based Fused Filament Fabrication (FFF)-Derived Process for the Development of Polylactic Acid/Hydroxyapatite Scaffolds Dedicated to Bone Regeneration

Résumé

Scaffolds can be defined as 3D architectures with specific features (surface properties, porosity, rigidity, biodegradability, etc.) that help cells to attach, proliferate, and to differentiate into specific lineage. For bone regeneration, rather high mechanical properties are required. That is why polylactic acid (PLA) and PLA/hydroxyapatite (HA) scaffolds (10 wt.%) were produced by a peculiar fused filament fabrication (FFF)-derived process. The effect of the addition of HA particles in the scaffolds was investigated in terms of morphology, biological properties, and biodegradation behavior. It was found that the scaffolds were biocompatible and that cells managed to attach and proliferate. Biodegradability was assessed over a 5-month period (according to the ISO 13781-Biodegradability norm) through gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and compression tests. The results revealed that the presence of HA in the scaffolds induced a faster and more complete polymer biodegradation, with a gradual decrease in the molar mass (Mn) and compressive mechanical properties over time. In contrast, the Mn of PLA only decreased during the processing steps to obtain scaffolds (extrusion + 3D-printing) but PLA scaffolds did not degrade during conditioning, which was highlighted by a high retention of the mechanical properties of the scaffolds after conditioning.
Fichier principal
Vignette du fichier
Bayart et al. (2022) - Pellet-Based Fused Filament Fabrication (FFF)-Derived Process for the Development of Polylactic Acid Hydroxyapatite Scaffolds .pdf (4.47 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03772019 , version 1 (07-09-2022)

Licence

Identifiants

Citer

Marie Bayart, Marie Dubus, Sébastien Charlon, Halima Kerdjoudj, Nicolas Baleine, et al.. Pellet-Based Fused Filament Fabrication (FFF)-Derived Process for the Development of Polylactic Acid/Hydroxyapatite Scaffolds Dedicated to Bone Regeneration. Materials, 2022, 15 (16), pp.5615. ⟨10.3390/ma15165615⟩. ⟨hal-03772019⟩
46 Consultations
54 Téléchargements

Altmetric

Partager

More