Study of the slippage and sliding mesoscopic defects during complex shape preforming of woven fabric
Résumé
This study proposes to study the sliding and slippage mesoscopic defects that appear during the preforming phase of dry reinforcements to produce complex composite shapes. For this purpose, experimental preforming tests were conducted on a plain weave fabric with low cohesion using a specific punch developed specifically for this purpose, and which combines the geometric facets of a square and a tetrahedron. The tests were conducted under several configurations varying the blank holder pressure intensity as well as its distribution, through the number and springs position that generate normal forces on the blank holders. The results showed that the corners of the geometry formed by orthogonal faces favor the appearance of mesoscopic defects and specifically slippage because of its severity. Sliding has shown itself to be very sensitive both to the singularities of the geometry where it appears, and to the heterogeneity of the pressure distribution of the blank holders. On the other hand, the sliding, which appears in the vicinity of the slippage on flat faces, is rather sensitive to the distribution of the pressure. The increase in the blank holder pressure, regardless of the conditions of its application, leads to an almost linear increase in the extent and number of these mesoscopic defects.